

For the problems 7-16 find the listed properties. You may graph the function if you find that it helps you to see the properties:

- a. domain
- b. range
- c. intervals of increase and decrease

d. zeroes e. y-intercept f. end behavior

 $D = (0, \infty)$ $R = \mathbb{R}$ Inc = (0, \omega), Dec = \omega Zeroes: (1,0) y-int: \overline{O} $\lim_{x \to \infty} y = \infty$ $D = (-1, \infty)$ $R = \mathbb{R}$ Inc = Ø, Dec = (-1, \overline) Zeroes: (0,0) *y*-int: (0,0) $\lim_{x \to \infty} y = -\infty$

12. $y = \log_2 x$	13. $y = -\log_3 x$	14. $y = 2\log x$
$D = (0, \infty)$	$D = (0, \infty)$	$D = (0, \infty)$
$R = \mathbb{R}$	$R = \mathbb{R}$	$R = \mathbb{R}$
Inc = \mathbb{R}^+ , Dec = \emptyset	Inc = \emptyset , Dec = \mathbb{R}^+	Inc = \mathbb{R}^+ , Dec = Ø
Zeroes: (1,0)	Zeroes: (1,0)	Zeroes: (1,0)
y-int: Ø	y-int: Ø	y-int: Ø
$\lim_{x \to \infty} y = \infty$	$\lim_{x\to\infty}y=-\infty$	$\lim_{x\to\infty} y = \infty$

15. y = 3ln(x) + 2	16. y = -ln(x - 2)	$17. y = \ln(x - 1)$
$D=(0,\infty)$	$D = (2, \infty)$	$D = (1, \infty)$
$R = \mathbb{R}$	$R = \mathbb{R}$	$R = \mathbb{R}$
Inc = \mathbb{R}^+ , Dec = \emptyset	$Inc = \emptyset$, $Dec = (2, \infty)$	$Inc = (1, \infty), Dec = \emptyset$
Zeroes: in (0,1)	Zeroes: (3,0)	Zeroes: (2,0)
<i>y</i> -int: Ø	y-int: Ø	y-int: Ø
$\lim_{x \to \infty} y = \infty$	$\lim_{x\to\infty}y=-\infty$	$\lim_{x\to\infty}y=\infty$

18. $y = a \log_b x$, a and b are natural numbers greater than 1

 $D = (0, \infty)$ $R = \mathbb{R}$ Inc = \mathbb{R}^+ , Dec = \emptyset Zeroes: (1,0) *y*-int: \emptyset $\lim_{x \to \infty} y = \infty$

19. $y = -a \log_b x$, a and b are natural numbers greater than 1

$$D = (0, \infty)$$

$$R = \mathbb{R}$$

Inc = Ø, Dec = \mathbb{R}^+
Zeroes: (1,0)
y-int: Ø

$$\lim_{x \to \infty} y = -\infty$$

Find the average rate of change on the given interval.

20.
$$y = \log_2 x$$
 on [4,8]
 $f(4) = 2, f(8) = 3$
 $m = \frac{y_2 - y_1}{x_2 - x_1} =$
 $m = \frac{(3) - (2)}{8 - 4} = \frac{1}{4}$
 $m = \frac{1}{4}$
 $m = -\frac{3}{4}$
 $21. y = -\log_3 x$ on $\left[\frac{1}{3}, 3\right]$
 $f\left(\frac{1}{3}\right) = 1, f(3) = -1$
 $m = \frac{y_2 - y_1}{x_2 - x_1} =$
 $m = \frac{(-1) - (1)}{3 - \frac{1}{3}} = \frac{-2}{8/3} =$

22.
$$y = \ln x^2 \text{ on } (2,6)$$

 $(2, \ln 4), (6, \ln 36)$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$
 $m = \frac{(\ln 36) - (\ln 4)}{(6) - (2)}$
 $m = \frac{\ln 9}{4}$